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GROUND SUBGROUPS*

U.A. ROZIKOV1

Abstract. In this article we give a concept of ground subgroup for finite and countable groups.

By our definition such a subgroup of a group depends on a given subset of the group and on

a given partition of the subset. For finite and free groups we describe some sets of ground

subgroups. We apply the ground subgroups to describe ground states of a model of statistical

mechanics.
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1. Introduction

There are several thousand papers and books devoted to the theory of groups. But still there
are unsolved problems, most of which arise in solving of problems of natural sciences as physics,
biology etc. In particular, if configuration of a physical system is located on a lattice (in our case
on the graph of a group) then the configuration can be considered as a function defined on the
lattice. Usually, more important configurations (functions) are periodic ones. It is well-known
that if the lattice has a group representation then periodicity of a function can be defined by a
given subgroup of the representation. More precisely, if a subgroup, say H, is given, then one
can define H-periodic function as a function, which has a constant value (depending only on the
coset) on each (right or left) coset of H. So the periodicity is related to a special partition of
the group (that presents the lattice on which our physical system is located). There are many
works devoted to several kind of partitions of groups (lattices) (see e.g. [1],[2], [4]-[9], [12]).

In this paper we study more general problem: given a subset A of a finite or countable group
G, and given a partition of A, is there any subgroup H of G such that cosets of which divide
the set A exactly as the given partition? This problem arises if, for example, one want to study
the periodic ground configurations (states) of a physical system with the Hamiltonian (energy)
which is a sum of interaction functions IA defined on A (see e.g. [3], [10], [11]). Note that a
Hamiltonian is a function of configurations. A ground state of a Hamiltonian is a (periodic)
configuration which minimizes the Hamiltonian. Thus subgroups which we want to describe are
related to the ground states of a Hamiltonian, so we call them ground subgroups.

The paper is organized as follows. In section 2 we give all necessary definitions and formulation
of the problem. In sections 3-5 we describe ground subgroups of finite and free groups. A ground
subgroup depends on a given subset, say A and on a given partition of the subset A. For finite
groups we show that one can choose A and its partition such that there does not exist any ground
subgroup corresponding to this partition of the subset. Section 6 is devoted to an application
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of results to description of ground states of a Hamiltonian defined on a Cayley tree. In the last
section we discuss the results and give some open problems.

2. Definitions and statement of the problem

Let G be a finite or countable group and H be a subgroup of G. For x ∈ G denote Hx =
= {yx : y ∈ H} the right coset of the subgroup H. Define the relation ∼ on G of right congruence
by a ∼ b if and only if ab−1 ∈ H. This relation is equivalence on G. Hence the right cosets of
H are pairwise disjoint. The cardinal of the collection of all right cosets is called the index of
the subgroup H in the group G and is denoted by |G : H|. Let H ⊂ G is a subgroup with index
r ∈ N ∪ {+∞}. Denote by H1 = H, H2, ..., Hr the right cosets of H. For an arbitrary finite
subset (not necessary subgroup) A ⊂ G denote

qH
A,i = |A ∩Hi|, i = 1, ..., r, (1)

where |S| denotes the cardinal of S.

Definition 2.1. Let A be a subset of G and
−→
k = (k1, ..., km) be a vector with

k1, ..., km ∈ {1, ..., |A|}, k1 ≤ k2 ≤ ... ≤ km and
m∑

i=1

ki = |A|. (2)

A subgroup H of index r ≥ m is called (A,
−→
k )-ground subgroup if there are i1, ..., im ∈

{1, ..., r}, ip 6= iq, p 6= q such that qH
A,ij

= kj , j = 1, .., m.

Denote by H(A,
−→
k ) ≡ HG(A,

−→
k ) the set of all (A,

−→
k )− ground subgroups of a group G. For

H(A,
−→
k ) 6= ® we denote

r0 ≡ r0(A,
−→
k ) = min{|G : H| : H ∈ H(A,

−→
k )}. (3)

Remark 2.1. The ground subgroups can be similarly defined for the left cosets of H.

Remark 2.2. If A ⊂ G and a subgroup H of index r ≥ 1 are given then it is obvious that
the subgroup H is (A,

−→
k )-ground subgroup with

−→
k = (k1, ..., km) such that kj = |A ∩Hj | 6= 0,

j = 1, ..., m. Thus H(A) =
⋃
−→
k
H(A,

−→
k ) is the set of all subgroups of G. Moreover if we know

all subgroups of a group G then for a given (A,
−→
k ) it will be easy to describe the set H(A,

−→
k ).

But the inverse problem: for a given A and
−→
k with condition (2) finding of an (A,

−→
k )-ground

subgroup is not easy.

So the main problem of this paper is
Problem 1. Let G be a finite or countable group. For a given A ⊂ G and

−→
k with conditions

(2) describe H(A,
−→
k ) and find r0 = r0(A,

−→
k ).

Remark 2.3. Since |A∩Hi| = |gA∩Hi| for any g ∈ H and i = 1, .., r, we have that if H is an
(A,

−→
k )-ground subgroup then it is (gA,

−→
k )- ground subgroup for any g ∈ H.

3. Groups without proper subgroups

Recall that in every group the set containing only the identity element 1, and the group itself,
are subgroups. Subgroups other than these are called proper subgroups. In this section we
consider groups which have no proper subgroups. Such a group is finite and with a prime order.

One can easily prove the following



U.A. ROZIKOV: GROUND SUBGROUPS 273

Proposition 3.1. If G is a group without proper subgroups then for all A ⊂ G

1. H(A,
−→
k ) = {{1}} and r0 = |G| if

−→
k = (k1, ..., km) with ki = 1, for all i = 1, ..., m.

2. H(A,
−→
k ) = {G} and r0 = 1 if

−→
k = (|A|) i.e. m = 1.

3. H(A,
−→
k ) = ® if

−→
k = (k1, ..., km) with at least one ki ∈ {2, ..., |A| − 1}.

4. Cyclic groups

Let G be a cyclic group of order n (n may be infinity). It is known that every subgroup of G

is cyclic. Moreover, the order of any subgroup of G is a divisor of n and for each positive divisor
p of n the group G has exactly one subgroup of order p. Each infinite subgroup of G is pZ for
some p, which is bijective to (so isomorphic to) Z. All factor groups of Z are finite, except for
the trivial exception Z/0 = Z/0Z.

The following theorem gives upper estimation for the set H.

Theorem 4.1. Let G be a cyclic group of finite order n and 1 = n0 < n1 < ... < np−1 < np = n

are all divisors of n. Let H(ni) be the subgroup of G with index ni, i = 0, ..., p. For A ⊂ G and−→
k with conditions (2) we have

H(A,
−→
k ) ⊆ Ĥ(A,

−→
k ) =

{
H(ni) : m ≤ ni ≤ n

‖−→k ‖

}
,

where ‖−→k ‖ = max{ki : 1 ≤ i ≤ m}.
Proof. By construction of

−→
k we have m ≤ ni. Let H

(ni)
j , j = 1, 2, ..., ni be the right cosets of

H(ni). We have
qH(ni)

A,j = |A ∩H
(ni)
j | = kj ≤ n

ni
,

i.e. ni ≤ n
kj

for all j = 1, .., m which implies ni ≤ n

‖−→k ‖ . This completes the proof. ¤

Corollary 4.1. If m > n

‖−→k ‖ then H(A,
−→
k ) = ®.

The following example shows that the estimation of the set H(A,
−→
k ) given in Theorem 4.1

can not be improved i.e there are some A and
−→
k such that H(A,

−→
k ) = Ĥ(A,

−→
k ) and even there

are some A and
−→
k such that H(A,

−→
k ) = ®.

Example 1. Consider the group G = {0, 1, 2, 3, 4, 5} under addition modulo 6. All subgroups
of G are

H(1) = G, H(2) = {0, 2, 4}, H(3) = {0, 3}, H(6) = {0}.
Consider A = A1 = {1, 2, 3} then

−→
k can be one of the following vectors:

−→
k (1) = (1, 1, 1),

−→
k (2) = (1, 2),

−→
k (3) = (3)

and we have
H(A,

−→
k (1)) =

{
H(3),H(6)

}
= Ĥ(A,

−→
k (1)),

H(A,
−→
k (2)) =

{
H(2)

}
⊂ Ĥ(A,

−→
k (2)),H(A,

−→
k (3)) =

{
H(1)

}
⊂ Ĥ(A,

−→
k (3)).

Hence if A = A1 for all
−→
k we have non-empty set of ground subgroups. Now consider the case

A = A2 = {0, 1, 2, 4} then
−→
k can be one of the following vectors:

−→
k (1) = (1, 1, 1, 1),

−→
k (2) = (1, 1, 2),

−→
k (3) = (1, 3),

−→
k (4) = (2, 2),

−→
k (5) = (4)
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and we obtain
H(A,

−→
k (1)) =

{
H(6)

}
⊂ Ĥ(A,

−→
k (1)),

H(A,
−→
k (2)) =

{
H(3)

}
= Ĥ(A,

−→
k (2)), H(A,

−→
k (3)) =

{
H(2)

}
= Ĥ(A,

−→
k (3)),

H(A,
−→
k (4)) = ∅, H(A,

−→
k (5)) =

{
H(1)

}
= Ĥ(A,

−→
k (5)).

So for A = A2 we can have all possible cases: empty set, subset and equality. Now we shall
consider the case n = ∞ i.e G = Z. Let A be a finite subset of Z and p ∈ N . Denote

Ap,i = {x ∈ A : x = i(modp)}, i = 0, 1, ..., p− 1.

The following proposition is obvious

Proposition 4.1. If A ⊂ Z and
−→
k = (k1, ..., km) with (2) are given, then pZ ∈ H(A,

−→
k ) if and

only if for any j ∈ {1, ..., m} there is ij ∈ {0, 1, ..., p− 1} such that |Ap,ij | = kj.

Points x, y ∈ Z are called nearest-neighbors if |x− y| = 1.

Proposition 4.2. Let A be an arbitrary finite subset of Z. Assume that there exists q ∈
{2, ..., |A|} such that any B ⊂ A with |B| = q has at least one pair of nearest-neighbors. Then
H(A,

−→
k ) = ∅ for any

−→
k = (k1, ..., km) with m > 1 and at least one coordinate ki = q.

Proof. For m > 1, it is easy to see that Z /∈ H(A,
−→
k ). Assume that there is p > 1 such that

pZ ∈ H(A,
−→
k ) then by definition we should have |A∩ (pZ + r)| = q for some r ∈ {0, 1, ..., p−1}.

Denote B = A∩ (pZ + r), by conditions of theorem we have x, y ∈ B such that x = y +1. Since
x, y ∈ pZ + r, x− y = 0(modp) i.e. 1 = 0(modp) and p = 1 this is contradiction to p > 1. ¤

5. Free groups

Let G be a countable free group. For A ⊂ G we denote

A∗ = {z ∈ G : ∃x, y ∈ A, z = xy−1}. (4)

If G is generated by a set M , then M is called an irreducible set of generators if no proper subset
of M is a set of generators for G.

Lemma 5.1. 1. 1 ∈ A∗, where 1 is the identity of G. Moreover A∗ = {1} iff |A| = 1; 2. A = A∗

iff A is a subgroup;
3. A ∩A∗ = ∅ iff A is a subset of an irreducible set of generators of G;
4) A ⊂ A∗ iff 1 ∈ A.

Proof. 1)-3) are straightforward.
4) If 1 ∈ A then for any x ∈ A we have x1−1 = x ∈ A∗ i.e A ⊂ A∗. Now assume A ⊂ A∗

and 1 /∈ A then since A is a set as A = {x1, ..., xq} we should have 1 6= xm = xix
−1
j for any

m = 1, ..., q and some i = i(m), j = j(m) ∈ {1, ..., q}, i 6= j i.e. xmxjx
−1
i = 1 this is contradiction

to the assumption that G is a free group. This completes the proof. ¤

Note that if 1 = (1, ..., 1) is the vector defined by conditions (2) then for an arbitrary A ⊂ G

we have {1} ∈ H(A,1). But |G : {1}| = ∞. Now we shall give a construction of an (A,1)-ground
subgroup with finite index.

We shall use the following

Theorem 5.1. [6] If x ∈ G \ {1}, then there exists a normal subgroup Hx of G, of finite index,
that does not contain x.
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Denote
HA =

⋂

x∈A∗\{1}
Hx, (5)

where A ⊂ G with |A| > 1, A∗ is defined by (4) and Hx is given in Theorem 5.1.
Denote by α(x) the number of these generators that occur in the reduced form of x ∈ G and

by |x| the length of x.

Proposition 5.1. The normal subgroup HA ⊂ G is a (A,1)-ground subgroup for any A ⊂ G,
with |A| > 1. Moreover

min
x∈A∗\{1}

(α(x) + 1) ≤ |G : HA| ≤
∏

x∈A∗\{1}
(|x|+ 1)!. (6)

Proof. Let HA,j be a right coset of HA. By our construction of HA we get HA ∩ A∗ = {1},
consequently, for any x, y ∈ A we have xy−1 /∈ HA, i.e |A ∩HA,j | ∈ {0, 1}, for any j. Following
the proof of Theorem 5.1, given in [6] page 42, one can easily see that

α(x) + 1 ≤ |G : Hx| ≤ (|x|+ 1)!, (7)

which by (5) gives (6).
¤

6. An application: a model on a Cayley tree

In this section we consider a model of statistical mechanics on a Cayley tree. The Cayley tree
Γk = (V,L) of order k ≥ 1 is an infinite tree, i.e., a graph without cycles, from each vertex of
which exactly k + 1 edges issue. Here V is the set of vertices and L is the set of edges of Γk.

It is known that there exists a one-to-one correspondence between the set V of vertices of the
Cayley tree of order k ≥ 1 and the group Gk of the free products of k + 1 cyclic groups {e, ai},
i = 1, ..., k + 1 of the second order (i.e. a2

i = e, a−1
i = ai) with generators a1, a2, ..., ak+1.

For A ⊆ V a spin configuration σA on A is defined as a function x ∈ A → σA(x) ∈ Φ =
{1, 2, ..., q}; the set of all configurations coincides with ΩA = ΦA. We denote Ω = ΩV and
σ = σV . Define a periodic configuration as a configuration σ ∈ Ω which is invariant under a
subgroup of shifts G∗

k ⊂ Gk of finite index.
In [10] the following model of statistical mechanics was considered. For A ⊂ V define the

function U : σA ∈ ΩA → U(σA) ∈ {|A| − 1, |A| − 2, ..., |A| −min{|A|, |Φ|}} by

U(σA) = |A| − |σA ∩ Φ|, (8)

where Φ = {1, 2, ..., q} and |σA∩Φ| is the number of distinct values of σA(x), x ∈ A. For instance
if σA is a constant configuration then |σA ∩ Φ| = 1.

Note that if |A| = 2, say A = {x, y}, then U({σ(x), σ(y)}) = δσ(x),σ(y) i.e U is a generalization
of the Kronecker symbol.

Denote by Mr the set of all balls br(x) = {y ∈ V : d(x, y) ≤ r} with radius r ≥ 1, where
d(x, y) is the distance on the Cayley tree i.e the number of edges of the shortest path connecting
x and y.

Now consider the Hamiltonian

H(σ) = −J
∑

b∈Mr

U(σb), (9)

where J ∈ R \ {0}.
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Remark 6.1. Since U is a generalization of the Kronecker symbol, the Hamiltonian (9) is a
natural generalization of Potts model, for details about Potts model see e.g. [2], [11].

A periodic configuration φ ∈ Ω is called a ground state of the Hamiltonian (9) if H(φ) ≤ H(σ)
for all σ ∈ Ω.

Denote by GS(H) the set of all ground states of H. Put

K ≡ K(k, r) = |br(x)| = 1 + (k − 1)−1(k + 1)(kr − 1),

where k ≥ 2 is the order of the Cayley tree and r ≥ 1 is an integer number.

Theorem 6.1. 1. If J > 0 then GS(H) contains the constant configurations only i.e it contains
q configurations σ(i) ≡ i, i = 1, .., q.

2. If q is large enough and J < 0 then GS(H) contains at least q!
(q−K)! periodic ground states,

which are periodic with respect to the (b,1)-ground subgroup Hb, with b ∈ Mr.

Proof. 1) It is easy to see that for J > 0 a configuration φ minimizes H iff it maximizes U on
any ball b ∈ Mr i.e iff it is a constant configuration. 2) For J < 0 a configuration φ minimizes
H iff it also minimizes U on any ball b ∈ Mr. So on any ball b ∈ Mr the configuration has to
be with distinct values. First consider b(e) ∈ Mr i.e the ball with the center e. Note that an
analogue of Theorem 5.1 is true for the group Gk (see [2]). Consequently, Proposition 5.1 is also
true for Gk. Hence we have a (b(e),1)-ground subgroup H of Gk. It is easy to see that this
subgroup is also (b(g),1) -ground subgroup for any g ∈ Gk, where b(g) ∈ Mr is a ball with the
center g. So now we can define a H-periodic ground state φ as a function φ : Gk → Φ such that
φ(x) = i if x is an element of the (right) coset Hi of H. Since q is large enough we can always
choose distinct values of the configuration φ on distinct cosets and number of such choices is
equal to

(
q
K

) ·K! = q!
(q−K)! . Theorem is proved. ¤

Remark 6.2. By the proof 2) of Theorem 6.1 it is clear that if we know |Gk : H| then q can be
chosen as q ≥ |Gk : H|.

7. Discussion and open problems

For a given finite or countable group G we have defined a concept of ground subgroup for
a subset A, and its given partition. If groups are finite, we obtained a set of such subgroups
and showed that this set can be empty for some suitable choice of A and its partition. For free
groups we proved that for an arbitrary A one can construct a subgroup which divides the set
A to distinct (non-equivalent, see section 2) elements. In the section 6 we applied this result to
describe the ground states of a model with an arbitrary finite interaction radius (i.e diameter
of the balls: 2r). One of the key problems related to the (spin) models is the description of the
set of Gibbs measures. This problem has a good connection with the problem of the description
the set of ground states. Because the phase diagram of Gibbs measures is close to the phase
diagram of the ground states for sufficiently small temperatures (see e.g.[3], [11]).

Results of the paper show that, in general, the Problem 1 (see section 2) is very difficult. For
example, I do not have any deep result about exact value of r0 (see Problem 1).

Note that from Problem 1 one can get more simple problem: let A ⊂ G and its partition
Ai, i = 1, ..., m, with |Ai| = ki are given, if a subgroup H is (A,

−→
k ) -ground subgroup then we

can assume that A1 ⊂ H but Ai ∩H = ∅ for any i = 2, ..., m. So if we denote B = A \A1 then
the following problem is a particular case of our problem:
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Problem 2. Let G is a finite or countable group. Consider arbitrary subsets A,B ∈ G such
that 1 /∈ B and A ∩ B = ∅. Describe the set H(A,B) of all subgroups H = H(A, B) of G such
that A ⊂ H and B ∩H = ∅?

It is easy to see that H(A,B) can be empty set. This happens, for example, if A = {a, b} and
B = {ab} then from A ⊂ H it follows B ⊂ H.

Note that for an arbitrary A ⊂ G one can easily show that there is H with A ⊂ H. In section
5, for free groups we have showed that for any B ⊂ G there exists a subgroup HB such that
B ∩HB = ∅ if 1 /∈ B. Even for free groups I have not any idea how to construct a subgroup (if
exists) with the properties mentioned in the Problem 2.

The following problem is very general:
Problem 3. Let A1, A2, ..., Am ⊂ G such that Ai ∩ Aj = ∅, i 6= j. Is there any subgroup H

of G, with index ≥ m, such that Ai is a subset of a right coset Hp(i) and p(i) 6= p(j) for i 6= j?
Note that Problem 1 is a particular case of the Problem 3. Indeed any subgroup H satisfying

the conditions of the Problem 3 also satisfies the conditions of the Problem 1, with A =
⋃

i Ai.
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